Find a partner. Examine the descriptions and events below and match them up if they fit. Sometimes multiple events might fit one description and sometimes no events might fit a description. Be prepared to prove you are right to another pair of students at the end.

Match up the events to the right description:

Event

Tomorrow I will sleep in late

Tomorrow I will be a frog

Tomorrow I will go to school
Likely to happen

Tomorrow I will love pizza

Tomorrow I will have a hair cut

Tomorrow I will eat bread

Tomorrow I will visit my friend
Unlikely to happen

Tomorrow I will be sick

Tomorrow the sun will rise in the morning
Impossible

Sharing time: Which ones were hard to work out? Why were they hard?

Understanding: Choose a statement that you and your partner disagree about. Explain how you know that you are right:
\qquad
\qquad

Questions:

1. Which event do you think is the most likely to happen? Why?
2. Which event do you think is the least likely to happen? Why?
3. Brainstorm some other words that we use to describe how likely something is to happen. Write any that you can think of here and give an example of an event that would be this likely:

Manipulation problem:

Two friends were trying to decide who should roll the die for their team. Charlie argued that she should roll because last time she rolled a six and therefore she is clearly a good roller. Liam argued that he should roll because Charlie couldn't roll another six when she had just rolled one. What do you think?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Date:
Problem solving / T\&R:

- Problem solved with minimal or non-mathematical prompting - Some leading questions were used to prompt thinking

Reasoning / Comm.:
(verbal, written, working and equations, or visual representations)

$\begin{aligned} & a \\ & a \\ & a \end{aligned}$	23	Twentythree	
	32	Thirty-two	
$\left.\begin{aligned} & \mathrm{a} \\ & \mathrm{a} \\ & \mathrm{a} \\ & \mathrm{a} \end{aligned} \right\rvert\,$	14	Fourteen	

$\therefore \theta$	41	Forty-one	- 8
	56	Fifty-six	
	65	Sixty-five	a
- 0	12	Twelve	$\begin{array}{lll} a & a & a \\ a & 9 & a \\ 0 & 9 & a \\ 0 & 0 & a \end{array}$

\bigcirc	21	Twentyone	
$\begin{array}{l\|} \mathbf{a} \\ \mathbf{a} \\ \text { a } \\ \text { a } \\ \text { a } \end{array}$	15	Fifteen	
	16	Sixteen	
	34	Thirty-four	

Use the following terminology to describe the possibility of achieving the outcomes listed below. An example has been completed for you.

Terminology: certain, most likely, more likely, equally likely, less likely, least likely, multiple outcomes.

Example:

When I toss a coin, the likelihood of getting heads or tails is: equally likely.
Describe the likelihood of the following outcomes occurring:

1. The sun rising tomorrow.
2. Throwing a 6 on a dice compared to throwing a 3 on a dice.
3. A bag contains 5 balls. There are 4 red and 1 blue.

- Describe the likelihood of getting a red ball over a blue ball:
- Describe the likelihood of getting a blue ball over a red ball:

4. Choose three people from your class. List them below. Describe the likelihood of each one winning in a race:

-

-
-

5. For the same three people from above, describe the likelihood of each one winning a mental maths competition against each other:
6. Who in your class would be 'most likely' to win an art prize?
7. Who in your class would be 'equally likely' to have the same food for lunch?
8. Who would be 'least likely' to be found in the school computer room?

What patterns have I found?

BACKWARDS QUESTION:

Make up a question for which the answer would be, 'more likely':
II. Sample Space: all possible outcomes

In this activity you will learn about the Sample Space in an experiment. Look at the descriptions below to work out what the sample space is. Use this to describe the sample space for the experiments listed below.

Example:

For tossing dice, the possible outcomes are 1, 2, 3, 4, 5 and 6 .
The sample space is $1,2,3,4,5,6$.
Describe what you think sample space means:

For the experiments below, list the sample space:

1. Tossing a coin
2. Choosing a ball from a bag that contains red and blue balls
3. Choosing a number from $1-10$
4. Spinning the spinner shown below:

What does sample space mean?

BACKWARDS QUESTION:

If the sample space for a spinner was yellow, yellow, red, blue, what do you think the spinner might look like? Draw it:

I2. Conduct experiments to collect data
You are going to conduct some experiments to collect data. You will list the sample space in the left column of the tables below. You will repeat the experiment 20 times, and record the number of times each outcome occurs using tally marks.

Experiment 1: Tossing a coin

Sample Space:	Number of outcomes out of 20 trials:

What did you find?

Experiment 2: Rolling a die

Sample Space:	Number of outcomes out of 20 trials:

What did you find?

BACKWARDS QUESTION:

If an experiment gave the following results for 40 spins of a spinner, draw what you think the spinner might look like:
Red: HI I III III III III III
Blue: III HI
Why do you think having more spins makes a difference?

Interleaved practise

Year 3, week 8
Number:

1. Make up a number pattern that starts with the number 205. Write it on the lines and describe the pattern.
205, \qquad , \qquad , \qquad ,
2. These biscuits are packed in boxes in layers that look like this. How many biscuits would there be if there were 2 layers in a box? Show how you worked it out.

3. What numbers would go where the arrows are pointing?

4. Use these rectangles to show which is bigger one quarter or one fifth.

5. I received $\$ 2.45$ change from $\$ 5.00$ when I bought some lollies. How much did I pay for the lollies?

Measurement/Geometry:

6. I have measured out 1 litre of juice into this jug. How many 200 mL glasses of juice can I pour with it?

7. Draw the hands on the clock to show 25 minutes to 4.

What would it look like on this digital clock?

8. On the back of this sheet, draw 3 objects you find in your home or classroom that are symmetrical.

Chance/Data:

9. Draw the counters that are in the bag using this information:

- There are 14 counters in the bag. They are blue, yellow and green.
- If I shut my eyes and take out a counter, I have the same chance of drawing a blue or a yellow counter

12. Difference between likely and certain

Find a partner. Decide if the following statements are certain labsolutely will happen, nothing can stop this happening) and which are very likely (will almost certainly happen, but something could happen to stop it).

Situation
I will have tea tonight
My favourite food today will be my favourite food tomorrow

I will go to school on Tuesday

The sun will rise tomorrow
My teacher today will still be my teacher tomorrow

It will be hot in Summer
I will get a present or card on my birthday

I will see you tomorrow

It will rain sometime in the next year

Circle the description that fits:

Very likely / Certain

How did you decide if something was very likely or if it was certain?

Which ones did you argue over? Why?

BACKWARDS QUESTION:

Which one is the most certain?
Explain your answer:

I3. Difference between unlikely and impossible

Find a partner. Decide if the following statements are impossible labsolutely will not happen, nothing can make this happen) and which are very unlikely (will almost certainly not happen, but something could happen to change this).

Situation

I will not have tea tonight
My favourite food today will not be my favourite food tomorrow

I will not go to school on Tuesday

The sun will not rise tomorrow
My teacher today will not still be my teacher tomorrow

It will be not hot in Summer
I will not get a present or card on my birthday

I will not see you tomorrow
It will not rain in the next year

Circle the description that fits:

Very unlikely / Impossible

How did you decide if something was very unlikely or if it was impossible?

Which ones did you argue over? Why?

BACKWARDS QUESTION:

Which one is the least certain?
Explain your answer:

